On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers
نویسندگان
چکیده
In this paper, we discuss the properties of the hyperfibonacci numbers F [r] n and hyperlucas numbers L [r] n . We investigate the log-concavity (log-convexity) of hyperfibonacci numbers and hyperlucas numbers. For example, we prove that {F [r] n }n≥1 is log-concave. In addition, we also study the log-concavity (log-convexity) of generalized hyperfibonacci numbers and hyperlucas numbers.
منابع مشابه
Some Properties of Hyperfibonacci and Hyperlucas Numbers
In this paper, we discuss the properties of hyperfibonacci numbers and hyperlucas numbers. We derive some identities for hyperfibonacci and hyperlucas numbers by the method of coefficients. Furthermore, we give asymptotic expansions of certain sums involving hyperfibonacci and hyperlucas numbers by Darboux’s method.
متن کاملA symmetric algorithm for hyperharmonic and Fibonacci numbers
In this work, we introduce a symmetric algorithm obtained by the recurrence relation an = a k n−1+a k−1 n . We point out that this algorithm can be apply to hyperharmonic-, ordinary and incomplete Fibonacciand Lucas numbers. An explicit formulae for hyperharmonic numbers, general generating functions of the Fibonacciand Lucas numbers are obtained. Besides we define ”hyperfibonacci numbers”, ”hy...
متن کاملNumerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes
In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...
متن کاملSchur positivity and the q-log-convexity of the Narayana polynomials
We prove two recent conjectures of Liu and Wang by establishing the strong q-log-convexity of the Narayana polynomials, and showing that the Narayana transformation preserves log-convexity. We begin with a formula of Brändén expressing the q-Narayana numbers as a specialization of Schur functions and, by deriving several symmetric function identities, we obtain the necessary Schur-positivity re...
متن کاملLog-concavity of Stirling Numbers and Unimodality of Stirling Distributions
A series of inequalities involving Stirling numbers of the first and second kinds with adjacent indices are obtained. Some of them show log-concavity of Stirling numbers in three different directions. The inequalities are used to prove unimodality or strong unimodality of all the subfamilies of Stirling probability functions. Some additional applications are also presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013